The minimum number of elements that must be added to the relation R = {(a, b), (b, c), (b, d)} on the set {a, b, c, d} so that it is an equivalence relation, is __________.
If the shortest between the lines $${{x + \sqrt 6 } \over 2} = {{y - \sqrt 6 } \over 3} = {{z - \sqrt 6 } \over 4}$$ and $${{x - \lambda } \over 3} = {{y - 2\sqrt 6 } \over 4} = {{z + 2\sqrt 6 } \over 5}$$ is 6, then the square of sum of all possible values of $$\lambda$$ is :
Let $$\overrightarrow a = \widehat i + 2\widehat j + \lambda \widehat k,\overrightarrow b = 3\widehat i - 5\widehat j - \lambda \widehat k,\overrightarrow a \,.\,\overrightarrow c = 7,2\overrightarrow b \,.\,\overrightarrow c + 43 = 0,\overrightarrow a \times \overrightarrow c = \overrightarrow b \times \overrightarrow c $$. Then $$\left| {\overrightarrow a \,.\,\overrightarrow b } \right|$$ is equal to :
Let the sum of the coefficients of the first three terms in the expansion of $${\left( {x - {3 \over {{x^2}}}} \right)^n},x \ne 0.~n \in \mathbb{N}$$, be 376. Then the coefficient of $$x^4$$ is __________.