The electric field and magnetic field components of an electromagnetic wave going through vacuum is described by
$$\mathrm{{E_x} = {E_o}\sin (kz - \omega t)}$$
$$\mathrm{{B_y} = {B_o}\sin (kz - \omega t)}$$
Then the correct relation between E$$_0$$ and B$$_0$$ is given by
A metallic rod of length 'L' is rotated with an angular speed of '$$\omega$$' normal to a uniform magnetic field 'B' about an axis passing through one end of rod as shown in figure. The induced emf will be :
Given below are two statements: one is labelled as Assertion A and the other is labelled as Reason R
Assertion A : Steel is used in the construction of buildings and bridges.
Reason R : Steel is more elastic and its elastic limit is high.
In the light of above statements, choose the most appropriate answer from the options given below
If the distance of the earth from Sun is 1.5 $$\times$$ 10$$^6$$ km. Then the distance of an imaginary planet from Sun, if its period of revolution is 2.83 years is :