The number of integers, greater than 7000 that can be formed, using the digits 3, 5, 6, 7, 8 without repetition is :
Let $$\overrightarrow \alpha = 4\widehat i + 3\widehat j + 5\widehat k$$ and $$\overrightarrow \beta = \widehat i + 2\widehat j - 4\widehat k$$. Let $${\overrightarrow \beta _1}$$ be parallel to $$\overrightarrow \alpha $$ and $${\overrightarrow \beta _2}$$ be perpendicular to $$\overrightarrow \alpha $$. If $$\overrightarrow \beta = {\overrightarrow \beta _1} + {\overrightarrow \beta _2}$$, then the value of $$5{\overrightarrow \beta _2}\,.\left( {\widehat i + \widehat j + \widehat k} \right)$$ is :
If the system of equations
$$x+2y+3z=3$$
$$4x+3y-4z=4$$
$$8x+4y-\lambda z=9+\mu$$
has infinitely many solutions, then the ordered pair ($$\lambda,\mu$$) is equal to :
The set of all values of $$a$$ for which $$\mathop {\lim }\limits_{x \to a} ([x - 5] - [2x + 2]) = 0$$, where [$$\alpha$$] denotes the greatest integer less than or equal to $$\alpha$$ is equal to