$$\int\limits_{{{3\sqrt 2 } \over 4}}^{{{3\sqrt 3 } \over 4}} {{{48} \over {\sqrt {9 - 4{x^2}} }}dx} $$ is equal to :
The minimum number of elements that must be added to the relation R = {(a, b), (b, c), (b, d)} on the set {a, b, c, d} so that it is an equivalence relation, is __________.
If the shortest between the lines $${{x + \sqrt 6 } \over 2} = {{y - \sqrt 6 } \over 3} = {{z - \sqrt 6 } \over 4}$$ and $${{x - \lambda } \over 3} = {{y - 2\sqrt 6 } \over 4} = {{z + 2\sqrt 6 } \over 5}$$ is 6, then the square of sum of all possible values of $$\lambda$$ is :
Let $$\overrightarrow a = \widehat i + 2\widehat j + \lambda \widehat k,\overrightarrow b = 3\widehat i - 5\widehat j - \lambda \widehat k,\overrightarrow a \,.\,\overrightarrow c = 7,2\overrightarrow b \,.\,\overrightarrow c + 43 = 0,\overrightarrow a \times \overrightarrow c = \overrightarrow b \times \overrightarrow c $$. Then $$\left| {\overrightarrow a \,.\,\overrightarrow b } \right|$$ is equal to :