1
JEE Main 2022 (Online) 26th July Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

$$ \text { The integral } \int \frac{\left(1-\frac{1}{\sqrt{3}}\right)(\cos x-\sin x)}{\left(1+\frac{2}{\sqrt{3}} \sin 2 x\right)} d x \text { is equal to } $$

A
$$\frac{1}{2} \log _{e}\left|\frac{\tan \left(\frac{x}{2}+\frac{\pi}{12}\right)}{\tan \left(\frac{x}{2}+\frac{\pi}{6}\right)}\right|+C$$
B
$$\frac{1}{2} \log _{e}\left|\frac{\tan \left(\frac{x}{2}+\frac{\pi}{6}\right)}{\tan \left(\frac{x}{2}+\frac{\pi}{3}\right)}\right|+C$$
C
$$ \log _{e}\left|\frac{\tan \left(\frac{x}{2}+\frac{\pi}{6}\right)}{\tan \left(\frac{x}{2}+\frac{\pi}{12}\right)}\right|+C$$
D
$$\frac{1}{2} \log _{e}\left|\frac{\tan \left(\frac{x}{2}-\frac{\pi}{12}\right)}{\tan \left(\frac{x}{2}-\frac{\pi}{6}\right)}\right|+C $$
2
JEE Main 2022 (Online) 26th July Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The area bounded by the curves $$y=\left|x^{2}-1\right|$$ and $$y=1$$ is

A
$$\frac{2}{3}(\sqrt{2}+1)$$
B
$$\frac{4}{3}(\sqrt{2}-1)$$
C
$$2(\sqrt{2}-1)$$
D
$$\frac{8}{3}(\sqrt{2}-1)$$
3
JEE Main 2022 (Online) 26th July Evening Shift
Numerical
+4
-1
Change Language

Let $$A=\{1,2,3,4,5,6,7\}$$ and $$B=\{3,6,7,9\}$$. Then the number of elements in the set $$\{C \subseteq A: C \cap B \neq \phi\}$$ is ___________.

Your input ____
4
JEE Main 2022 (Online) 26th July Evening Shift
Numerical
+4
-1
Change Language

Numbers are to be formed between 1000 and 3000 , which are divisible by 4 , using the digits $$1,2,3,4,5$$ and 6 without repetition of digits. Then the total number of such numbers is ____________.

Your input ____
JEE Main Papers
2023
2021
EXAM MAP