1
JEE Main 2022 (Online) 26th July Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

$$ \text { Let } A=\left[\begin{array}{l} 1 \\ 1 \\ 1 \end{array}\right] \text { and } B=\left[\begin{array}{ccc} 9^{2} & -10^{2} & 11^{2} \\ 12^{2} & 13^{2} & -14^{2} \\ -15^{2} & 16^{2} & 17^{2} \end{array}\right] \text {, then the value of } A^{\prime} B A \text { is: } $$

A
1224
B
1042
C
540
D
539
2
JEE Main 2022 (Online) 26th July Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$\mathrm{P}$$ and $$\mathrm{Q}$$ be any points on the curves $$(x-1)^{2}+(y+1)^{2}=1$$ and $$y=x^{2}$$, respectively. The distance between $$P$$ and $$Q$$ is minimum for some value of the abscissa of $$P$$ in the interval :

A
$$\left(0, \frac{1}{4}\right)$$
B
$$\left(\frac{1}{2}, \frac{3}{4}\right)$$
C
$$\left(\frac{1}{4}, \frac{1}{2}\right)$$
D
$$\left(\frac{3}{4}, 1\right)$$
3
JEE Main 2022 (Online) 26th July Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If the maximum value of $$a$$, for which the function $$f_{a}(x)=\tan ^{-1} 2 x-3 a x+7$$ is non-decreasing in $$\left(-\frac{\pi}{6}, \frac{\pi}{6}\right)$$, is $$\bar{a}$$, then $$f_{\bar{a}}\left(\frac{\pi}{8}\right)$$ is equal to :

A
$$ 8-\frac{9 \pi}{4\left(9+\pi^{2}\right)} $$
B
$$8-\frac{4 \pi}{9\left(4+\pi^{2}\right)}$$
C
$$8\left(\frac{1+\pi^{2}}{9+\pi^{2}}\right)$$
D
$$8-\frac{\pi}{4}$$
4
JEE Main 2022 (Online) 26th July Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$\beta=\mathop {\lim }\limits_{x \to 0} \frac{\alpha x-\left(e^{3 x}-1\right)}{\alpha x\left(e^{3 x}-1\right)}$$ for some $$\alpha \in \mathbb{R}$$. Then the value of $$\alpha+\beta$$ is :

A
$$\frac{14}{5}$$
B
$$\frac{3}{2}$$
C
$$\frac{5}{2}$$
D
$$\frac{7}{2}$$
JEE Main Papers
2023
2021
EXAM MAP