1
JEE Main 2022 (Online) 26th July Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If the line $$x-1=0$$ is a directrix of the hyperbola $$k x^{2}-y^{2}=6$$, then the hyperbola passes through the point :

A
$$(-2 \sqrt{5}, 6)$$
B
$$(-\sqrt{5}, 3)$$
C
$$(\sqrt{5},-2)$$
D
$$(2 \sqrt{5}, 3 \sqrt{6})$$
2
JEE Main 2022 (Online) 26th July Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If $$0 < x < {1 \over {\sqrt 2 }}$$ and $${{{{\sin }^{ - 1}}x} \over \alpha } = {{{{\cos }^{ - 1}}x} \over \beta }$$, then the value of $$\sin \left( {{{2\pi \alpha } \over {\alpha + \beta }}} \right)$$ is :

A
$$4 \sqrt{\left(1-x^{2}\right)}\left(1-2 x^{2}\right)$$
B
$$4 x \sqrt{\left(1-x^{2}\right)}\left(1-2 x^{2}\right)$$
C
$$2 x \sqrt{\left(1-x^{2}\right)}\left(1-4 x^{2}\right)$$
D
$$4 \sqrt{\left(1-x^{2}\right)}\left(1-4 x^{2}\right)$$
3
JEE Main 2022 (Online) 26th July Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

$$ \text { The integral } \int \frac{\left(1-\frac{1}{\sqrt{3}}\right)(\cos x-\sin x)}{\left(1+\frac{2}{\sqrt{3}} \sin 2 x\right)} d x \text { is equal to } $$

A
$$\frac{1}{2} \log _{e}\left|\frac{\tan \left(\frac{x}{2}+\frac{\pi}{12}\right)}{\tan \left(\frac{x}{2}+\frac{\pi}{6}\right)}\right|+C$$
B
$$\frac{1}{2} \log _{e}\left|\frac{\tan \left(\frac{x}{2}+\frac{\pi}{6}\right)}{\tan \left(\frac{x}{2}+\frac{\pi}{3}\right)}\right|+C$$
C
$$ \log _{e}\left|\frac{\tan \left(\frac{x}{2}+\frac{\pi}{6}\right)}{\tan \left(\frac{x}{2}+\frac{\pi}{12}\right)}\right|+C$$
D
$$\frac{1}{2} \log _{e}\left|\frac{\tan \left(\frac{x}{2}-\frac{\pi}{12}\right)}{\tan \left(\frac{x}{2}-\frac{\pi}{6}\right)}\right|+C $$
4
JEE Main 2022 (Online) 26th July Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The area bounded by the curves $$y=\left|x^{2}-1\right|$$ and $$y=1$$ is

A
$$\frac{2}{3}(\sqrt{2}+1)$$
B
$$\frac{4}{3}(\sqrt{2}-1)$$
C
$$2(\sqrt{2}-1)$$
D
$$\frac{8}{3}(\sqrt{2}-1)$$
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12