1
JEE Main 2022 (Online) 26th July Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If the line $$x-1=0$$ is a directrix of the hyperbola $$k x^{2}-y^{2}=6$$, then the hyperbola passes through the point :

A
$$(-2 \sqrt{5}, 6)$$
B
$$(-\sqrt{5}, 3)$$
C
$$(\sqrt{5},-2)$$
D
$$(2 \sqrt{5}, 3 \sqrt{6})$$
2
JEE Main 2022 (Online) 26th July Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If $$0 < x < {1 \over {\sqrt 2 }}$$ and $${{{{\sin }^{ - 1}}x} \over \alpha } = {{{{\cos }^{ - 1}}x} \over \beta }$$, then the value of $$\sin \left( {{{2\pi \alpha } \over {\alpha + \beta }}} \right)$$ is :

A
$$4 \sqrt{\left(1-x^{2}\right)}\left(1-2 x^{2}\right)$$
B
$$4 x \sqrt{\left(1-x^{2}\right)}\left(1-2 x^{2}\right)$$
C
$$2 x \sqrt{\left(1-x^{2}\right)}\left(1-4 x^{2}\right)$$
D
$$4 \sqrt{\left(1-x^{2}\right)}\left(1-4 x^{2}\right)$$
3
JEE Main 2022 (Online) 26th July Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

$$ \text { The integral } \int \frac{\left(1-\frac{1}{\sqrt{3}}\right)(\cos x-\sin x)}{\left(1+\frac{2}{\sqrt{3}} \sin 2 x\right)} d x \text { is equal to } $$

A
$$\frac{1}{2} \log _{e}\left|\frac{\tan \left(\frac{x}{2}+\frac{\pi}{12}\right)}{\tan \left(\frac{x}{2}+\frac{\pi}{6}\right)}\right|+C$$
B
$$\frac{1}{2} \log _{e}\left|\frac{\tan \left(\frac{x}{2}+\frac{\pi}{6}\right)}{\tan \left(\frac{x}{2}+\frac{\pi}{3}\right)}\right|+C$$
C
$$ \log _{e}\left|\frac{\tan \left(\frac{x}{2}+\frac{\pi}{6}\right)}{\tan \left(\frac{x}{2}+\frac{\pi}{12}\right)}\right|+C$$
D
$$\frac{1}{2} \log _{e}\left|\frac{\tan \left(\frac{x}{2}-\frac{\pi}{12}\right)}{\tan \left(\frac{x}{2}-\frac{\pi}{6}\right)}\right|+C $$
4
JEE Main 2022 (Online) 26th July Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The area bounded by the curves $$y=\left|x^{2}-1\right|$$ and $$y=1$$ is

A
$$\frac{2}{3}(\sqrt{2}+1)$$
B
$$\frac{4}{3}(\sqrt{2}-1)$$
C
$$2(\sqrt{2}-1)$$
D
$$\frac{8}{3}(\sqrt{2}-1)$$
JEE Main Papers
2023
2021
EXAM MAP