Let the abscissae of the two points $$P$$ and $$Q$$ on a circle be the roots of $$x^{2}-4 x-6=0$$ and the ordinates of $$\mathrm{P}$$ and $$\mathrm{Q}$$ be the roots of $$y^{2}+2 y-7=0$$. If $$\mathrm{PQ}$$ is a diameter of the circle $$x^{2}+y^{2}+2 a x+2 b y+c=0$$, then the value of $$(a+b-c)$$ is _____________.
If the line $$x-1=0$$ is a directrix of the hyperbola $$k x^{2}-y^{2}=6$$, then the hyperbola passes through the point :
If $$0 < x < {1 \over {\sqrt 2 }}$$ and $${{{{\sin }^{ - 1}}x} \over \alpha } = {{{{\cos }^{ - 1}}x} \over \beta }$$, then the value of $$\sin \left( {{{2\pi \alpha } \over {\alpha + \beta }}} \right)$$ is :
$$ \text { The integral } \int \frac{\left(1-\frac{1}{\sqrt{3}}\right)(\cos x-\sin x)}{\left(1+\frac{2}{\sqrt{3}} \sin 2 x\right)} d x \text { is equal to } $$