1
JEE Main 2020 (Online) 7th January Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
Total number of 6-digit numbers in which only and all the five digits 1, 3, 5, 7 and 9 appear, is :
A
$${5 \over 2}\left( {6!} \right)$$
B
$${6!}$$
C
56
D
$${1 \over 2}\left( {6!} \right)$$
2
JEE Main 2020 (Online) 7th January Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
If $${\mathop{\rm Re}\nolimits} \left( {{{z - 1} \over {2z + i}}} \right) = 1$$, where z = x + iy, then the point (x, y) lies on a :
A
straight line whose slope is $${3 \over 2}$$
B
straight line whose slope is $$-{2 \over 3}$$
C
circle whose diameter is $${{\sqrt 5 } \over 2}$$
D
circle whose centre is at $$\left( { - {1 \over 2}, - {3 \over 2}} \right)$$
3
JEE Main 2020 (Online) 7th January Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
Let $$\alpha $$ and $$\beta $$ be two real roots of the equation
(k + 1)tan2x - $$\sqrt 2 $$ . $$\lambda $$tanx = (1 - k), where k($$ \ne $$ - 1) and $$\lambda $$ are real numbers. if tan2 ($$\alpha $$ + $$\beta $$) = 50, then a value of $$\lambda $$ is:
A
5$$\sqrt 2 $$
B
10
C
5
D
10$$\sqrt 2 $$
4
JEE Main 2020 (Online) 7th January Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
A vector $$\overrightarrow a = \alpha \widehat i + 2\widehat j + \beta \widehat k\left( {\alpha ,\beta \in R} \right)$$ lies in the plane of the vectors, $$\overrightarrow b = \widehat i + \widehat j$$ and $$\overrightarrow c = \widehat i - \widehat j + 4\widehat k$$. If $$\overrightarrow a $$ bisects the angle between $$\overrightarrow b $$ and $$\overrightarrow c $$, then:
A
$$\overrightarrow a .\widehat i + 3 = 0$$
B
$$\overrightarrow a .\widehat k - 4 = 0$$
C
$$\overrightarrow a .\widehat i + 1 = 0$$
D
$$\overrightarrow a .\widehat k + 2 = 0$$
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12