1
JEE Main 2020 (Online) 7th January Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
If y = y(x) is the solution of the differential equation, $${e^y}\left( {{{dy} \over {dx}} - 1} \right) = {e^x}$$ such that y(0) = 0, then y(1) is equal to:
A
2 + loge2
B
loge2
C
1 + loge2
D
2e
2
JEE Main 2020 (Online) 7th January Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
If $$y\left( \alpha \right) = \sqrt {2\left( {{{\tan \alpha + \cot \alpha } \over {1 + {{\tan }^2}\alpha }}} \right) + {1 \over {{{\sin }^2}\alpha }}} ,\alpha \in \left( {{{3\pi } \over 4},\pi } \right)$$

$${{dy} \over {d\alpha }}\,\,at\,\alpha = {{5\pi } \over 6}is$$ :
A
4
B
-4
C
$${4 \over 3}$$
D
-$${1 \over 4}$$
3
JEE Main 2020 (Online) 7th January Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
If g(x) = x2 + x - 1 and
(goƒ) (x) = 4x2 - 10x + 5, then ƒ$$\left( {{5 \over 4}} \right)$$ is equal to:
A
$${1 \over 2}$$
B
$${3 \over 2}$$
C
-$${1 \over 2}$$
D
-$${3 \over 2}$$
4
JEE Main 2020 (Online) 7th January Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
If ƒ(a + b + 1 - x) = ƒ(x), for all x, where a and b are fixed positive real numbers, then

$${1 \over {a + b}}\int_a^b {x\left( {f(x) + f(x + 1)} \right)} dx$$ is equal to:
A
$$\int_{a - 1}^{b - 1} {f(x+1)dx} $$
B
$$\int_{a + 1}^{b + 1} {f(x + 1)dx} $$
C
$$\int_{a - 1}^{b - 1} {f(x)dx} $$
D
$$\int_{a + 1}^{b + 1} {f(x)dx} $$
JEE Main Papers
2023
2021
EXAM MAP