1
JEE Main 2020 (Online) 7th January Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
Let $$\alpha $$ and $$\beta $$ be two real roots of the equation
(k + 1)tan2x - $$\sqrt 2 $$ . $$\lambda $$tanx = (1 - k), where k($$ \ne $$ - 1) and $$\lambda $$ are real numbers. if tan2 ($$\alpha $$ + $$\beta $$) = 50, then a value of $$\lambda $$ is:
A
5$$\sqrt 2 $$
B
10
C
5
D
10$$\sqrt 2 $$
2
JEE Main 2020 (Online) 7th January Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
A vector $$\overrightarrow a = \alpha \widehat i + 2\widehat j + \beta \widehat k\left( {\alpha ,\beta \in R} \right)$$ lies in the plane of the vectors, $$\overrightarrow b = \widehat i + \widehat j$$ and $$\overrightarrow c = \widehat i - \widehat j + 4\widehat k$$. If $$\overrightarrow a $$ bisects the angle between $$\overrightarrow b $$ and $$\overrightarrow c $$, then:
A
$$\overrightarrow a .\widehat i + 3 = 0$$
B
$$\overrightarrow a .\widehat k - 4 = 0$$
C
$$\overrightarrow a .\widehat i + 1 = 0$$
D
$$\overrightarrow a .\widehat k + 2 = 0$$
3
JEE Main 2020 (Online) 7th January Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
Let $$\alpha $$ be a root of the equation x2 + x + 1 = 0 and the
matrix A = $${1 \over {\sqrt 3 }}\left[ {\matrix{ 1 & 1 & 1 \cr 1 & \alpha & {{\alpha ^2}} \cr 1 & {{\alpha ^2}} & {{\alpha ^4}} \cr } } \right]$$

then the matrix A31 is equal to
A
A2
B
A
C
I3
D
A3
4
JEE Main 2020 (Online) 7th January Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
Let xk + yk = ak, (a, k > 0 ) and $${{dy} \over {dx}} + {\left( {{y \over x}} \right)^{{1 \over 3}}} = 0$$, then k is:
A
$${1 \over 3}$$
B
$${2 \over 3}$$
C
$${4 \over 3}$$
D
$${3 \over 2}$$
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12