1
JEE Main 2020 (Online) 7th January Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
Let y = y(x) be the solution curve of the differential equation,

$$\left( {{y^2} - x} \right){{dy} \over {dx}} = 1$$, satisfying y(0) = 1. This curve intersects the x-axis at a point whose abscissa is :
A
2 + e
B
-e
C
2
D
2 - e
2
JEE Main 2020 (Online) 7th January Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
Let $$\overrightarrow a $$ , $$\overrightarrow b $$ and $$\overrightarrow c $$ be three unit vectors such that
$$\overrightarrow a + \vec b + \overrightarrow c = \overrightarrow 0 $$. If $$\lambda = \overrightarrow a .\vec b + \vec b.\overrightarrow c + \overrightarrow c .\overrightarrow a $$ and
$$\overrightarrow d = \overrightarrow a \times \vec b + \vec b \times \overrightarrow c + \overrightarrow c \times \overrightarrow a $$, then the ordered pair, $$\left( {\lambda ,\overrightarrow d } \right)$$ is equal to :
A
$$\left( {{3 \over 2},3\overrightarrow a \times \overrightarrow c } \right)$$
B
$$\left( { - {3 \over 2},3\overrightarrow c \times \overrightarrow b } \right)$$
C
$$\left( { - {3 \over 2},3\overrightarrow a \times \overrightarrow b } \right)$$
D
$$\left( {{3 \over 2},3\overrightarrow b \times \overrightarrow c } \right)$$
3
JEE Main 2020 (Online) 7th January Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
The area (in sq. units) of the region
{(x, y) $$ \in $$ R2 | 4x2 $$ \le $$ y $$ \le $$ 8x + 12} is :
A
$${{125} \over 3}$$
B
$${{128} \over 3}$$
C
$${{127} \over 3}$$
D
$${{124} \over 3}$$
4
JEE Main 2020 (Online) 7th January Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
Let $$\alpha $$ and $$\beta $$ be the roots of the equation x2 - x - 1 = 0.
If pk = $${\left( \alpha \right)^k} + {\left( \beta \right)^k}$$ , k $$ \ge $$ 1, then which one of the following statements is not true?
A
(p1 + p2 + p3 + p4 + p5) = 26
B
p5 = 11
C
p3 = p5 – p4
D
p5 = p2 · p3
JEE Main Papers
2023
2021
EXAM MAP