1
JEE Main 2020 (Online) 7th January Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
Let $$\overrightarrow a $$ , $$\overrightarrow b $$ and $$\overrightarrow c $$ be three unit vectors such that
$$\overrightarrow a + \vec b + \overrightarrow c = \overrightarrow 0 $$. If $$\lambda = \overrightarrow a .\vec b + \vec b.\overrightarrow c + \overrightarrow c .\overrightarrow a $$ and
$$\overrightarrow d = \overrightarrow a \times \vec b + \vec b \times \overrightarrow c + \overrightarrow c \times \overrightarrow a $$, then the ordered pair, $$\left( {\lambda ,\overrightarrow d } \right)$$ is equal to :
A
$$\left( {{3 \over 2},3\overrightarrow a \times \overrightarrow c } \right)$$
B
$$\left( { - {3 \over 2},3\overrightarrow c \times \overrightarrow b } \right)$$
C
$$\left( { - {3 \over 2},3\overrightarrow a \times \overrightarrow b } \right)$$
D
$$\left( {{3 \over 2},3\overrightarrow b \times \overrightarrow c } \right)$$
2
JEE Main 2020 (Online) 7th January Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
The area (in sq. units) of the region
{(x, y) $$ \in $$ R2 | 4x2 $$ \le $$ y $$ \le $$ 8x + 12} is :
A
$${{125} \over 3}$$
B
$${{128} \over 3}$$
C
$${{127} \over 3}$$
D
$${{124} \over 3}$$
3
JEE Main 2020 (Online) 7th January Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
Let $$\alpha $$ and $$\beta $$ be the roots of the equation x2 - x - 1 = 0.
If pk = $${\left( \alpha \right)^k} + {\left( \beta \right)^k}$$ , k $$ \ge $$ 1, then which one of the following statements is not true?
A
(p1 + p2 + p3 + p4 + p5) = 26
B
p5 = 11
C
p3 = p5 – p4
D
p5 = p2 · p3
4
JEE Main 2020 (Online) 7th January Evening Slot
Numerical
+4
-0
Change Language
The sum of two forces $$\overrightarrow P $$ and $$\overrightarrow Q $$ is $$\overrightarrow R $$ such that $$\left| {\overrightarrow R } \right| = \left| {\overrightarrow P } \right|$$ . The angle $$\theta $$ (in degrees) that the resultant of 2$${\overrightarrow P }$$ and $${\overrightarrow Q }$$ will make with $${\overrightarrow Q }$$ is , ..............
Your input ____
JEE Main Papers
2023
2021
EXAM MAP