1
JEE Main 2020 (Online) 4th September Evening Slot
Numerical
+4
-0
Change Language
If $$\overrightarrow a = 2\widehat i + \widehat j + 2\widehat k$$, then the value of

$${\left| {\widehat i \times \left( {\overrightarrow a \times \widehat i} \right)} \right|^2} + {\left| {\widehat j \times \left( {\overrightarrow a \times \widehat j} \right)} \right|^2} + {\left| {\widehat k \times \left( {\overrightarrow a \times \widehat k} \right)} \right|^2}$$ is equal to____
Your input ____
2
JEE Main 2020 (Online) 4th September Evening Slot
Numerical
+4
-0
Change Language
Let PQ be a diameter of the circle x2 + y2 = 9. If $$\alpha $$ and $$\beta $$ are the lengths of the perpendiculars from P and Q on the straight line,
x + y = 2 respectively, then the maximum value of $$\alpha\beta $$ is _____.
Your input ____
3
JEE Main 2020 (Online) 4th September Evening Slot
Numerical
+4
-0
Change Language
Let {x} and [x] denote the fractional part of x and
the greatest integer $$ \le $$ x respectively of a real
number x. If $$\int_0^n {\left\{ x \right\}dx} ,\int_0^n {\left[ x \right]dx} $$ and 10(n2 – n),
$$\left( {n \in N,n > 1} \right)$$ are three consecutive terms of a G.P., then n is equal to_____.
Your input ____
4
JEE Main 2020 (Online) 4th September Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
Let a1, a2, ..., an be a given A.P. whose
common difference is an integer and
Sn = a1 + a2 + .... + an. If a1 = 1, an = 300 and 15 $$ \le $$ n $$ \le $$ 50, then
the ordered pair (Sn-4, an–4) is equal to:
A
(2480, 249)
B
(2480, 248)
C
(2490, 248)
D
(2490, 249)
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12