1
JEE Main 2020 (Online) 4th September Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
Let $$\lambda \ne 0$$ be in R. If $$\alpha $$ and $$\beta $$ are the roots of the
equation, x2 - x + 2$$\lambda $$ = 0 and $$\alpha $$ and $$\gamma $$ are the roots of
the equation, $$3{x^2} - 10x + 27\lambda = 0$$, then $${{\beta \gamma } \over \lambda }$$ is equal to:
A
36
B
9
C
27
D
18
2
JEE Main 2020 (Online) 4th September Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
The solution of the differential equation

$${{dy} \over {dx}} - {{y + 3x} \over {{{\log }_e}\left( {y + 3x} \right)}} + 3 = 0$$ is:

(where c is a constant of integration)
A
$$x - {1 \over 2}{\left( {{{\log }_e}\left( {y + 3x} \right)} \right)^2} = C$$
B
$$y + 3x - {1 \over 2}{\left( {{{\log }_e}x} \right)^2} = C$$
C
x – loge(y+3x) = C
D
x – 2loge(y+3x) = C
3
JEE Main 2020 (Online) 4th September Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
The function
$$f(x) = \left\{ {\matrix{ {{\pi \over 4} + {{\tan }^{ - 1}}x,} & {\left| x \right| \le 1} \cr {{1 \over 2}\left( {\left| x \right| - 1} \right),} & {\left| x \right| > 1} \cr } } \right.$$ is :
A
continuous on R–{–1} and differentiable on R–{–1, 1}
B
both continuous and differentiable on R–{1}
C
both continuous and differentiable on R–{–1}
D
continuous on R–{1} and differentiable on R–{–1, 1}
4
JEE Main 2020 (Online) 4th September Evening Slot
Numerical
+4
-0
Change Language
The distance between an object and a screen is 100 cm. A lens can produce real image of the object on the screen for two different positions between the screen and the object. The distance between these two positions is 40 cm. If the power of the lens is close to $$\left( {{N \over {100}}} \right)D$$ where N is an integer, the value of N is _________.
Your input ____
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12