1
JEE Main 2020 (Online) 4th September Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
If the perpendicular bisector of the line segment joining the points P(1 ,4) and Q(k, 3) has y-intercept equal to –4, then a value of k is :
A
$$\sqrt {14} $$
B
-4
C
–2
D
$$\sqrt {15} $$
2
JEE Main 2020 (Online) 4th September Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
Suppose the vectors x1, x2 and x3 are the
solutions of the system of linear equations,
Ax = b when the vector b on the right side is equal to b1, b2 and b3 respectively. if

$${x_1} = \left[ {\matrix{ 1 \cr 1 \cr 1 \cr } } \right]$$, $${x_2} = \left[ {\matrix{ 0 \cr 2 \cr 1 \cr } } \right]$$, $${x_3} = \left[ {\matrix{ 0 \cr 0 \cr 1 \cr } } \right]$$

$${b_1} = \left[ {\matrix{ 1 \cr 0 \cr 0 \cr } } \right]$$, $${b_2} = \left[ {\matrix{ 0 \cr 2 \cr 0 \cr } } \right]$$ and $${b_3} = \left[ {\matrix{ 0 \cr 0 \cr 2 \cr } } \right]$$,
then the determinant of A is equal to :
A
$${3 \over 2}$$
B
4
C
2
D
$${1 \over 2}$$
3
JEE Main 2020 (Online) 4th September Evening Slot
Numerical
+4
-0
Change Language
If $$\overrightarrow a = 2\widehat i + \widehat j + 2\widehat k$$, then the value of

$${\left| {\widehat i \times \left( {\overrightarrow a \times \widehat i} \right)} \right|^2} + {\left| {\widehat j \times \left( {\overrightarrow a \times \widehat j} \right)} \right|^2} + {\left| {\widehat k \times \left( {\overrightarrow a \times \widehat k} \right)} \right|^2}$$ is equal to____
Your input ____
4
JEE Main 2020 (Online) 4th September Evening Slot
Numerical
+4
-0
Change Language
Let PQ be a diameter of the circle x2 + y2 = 9. If $$\alpha $$ and $$\beta $$ are the lengths of the perpendiculars from P and Q on the straight line,
x + y = 2 respectively, then the maximum value of $$\alpha\beta $$ is _____.
Your input ____
JEE Main Papers
2023
2021
EXAM MAP