1
JEE Main 2017 (Offline)
MCQ (Single Correct Answer)
+4
-1
Change Language
Let $${I_n} = \int {{{\tan }^n}x\,dx} ,\,\left( {n > 1} \right).$$

If $${I_4} + {I_6}$$ = $$a{\tan ^5}x + b{x^5} + C$$, where C is a constant of integration,

then the ordered pair $$\left( {a,b} \right)$$ is equal to
A
$$\left( {{1 \over 5},0} \right)$$
B
$$\left( {{1 \over 5}, - 1} \right)$$
C
$$\left( { - {1 \over 5},0} \right)$$
D
$$\left( { - {1 \over 5},1} \right)$$
2
JEE Main 2017 (Offline)
MCQ (Single Correct Answer)
+4
-1
Change Language
The integral $$\int\limits_{{\pi \over 4}}^{{{3\pi } \over 4}} {{{dx} \over {1 + \cos x}}} $$ is equal to
A
2
B
4
C
$$-$$ 1
D
$$-$$ 2
3
JEE Main 2017 (Offline)
MCQ (Single Correct Answer)
+4
-1
Change Language
Twenty meters of wire is available for fencing off a flower-bed in the form of a circular sector. Then the maximum area (in sq. m) of the flower-bed, is :
A
10
B
25
C
30
D
12.5
4
JEE Main 2017 (Offline)
MCQ (Single Correct Answer)
+4
-1
Change Language
If for $$x \in \left( {0,{1 \over 4}} \right)$$, the derivatives of

$${\tan ^{ - 1}}\left( {{{6x\sqrt x } \over {1 - 9{x^3}}}} \right)$$ is $$\sqrt x .g\left( x \right)$$, then $$g\left( x \right)$$ equals
A
$${{{3x\sqrt x } \over {1 - 9{x^3}}}}$$
B
$${{{3x} \over {1 - 9{x^3}}}}$$
C
$${{3 \over {1 + 9{x^3}}}}$$
D
$${{9 \over {1 + 9{x^3}}}}$$
JEE Main Papers
2023
2021
EXAM MAP