1
JEE Main 2013 (Offline)
MCQ (Single Correct Answer)
+4
-1
At present, a firm is manufacturing $$2000$$ items. It is estimated that the rate of change of production P w.r.t. additional number of workers $$x$$ is given by $${{dp} \over {dx}} = 100 - 12\sqrt x .$$ If the firm employs $$25$$ more workers, then the new level of production of items is
A
$$2500$$
B
$$3000$$
C
$$3500$$
D
$$4500$$
2
JEE Main 2013 (Offline)
MCQ (Single Correct Answer)
+4
-1
The area (in square units) bounded by the curves $$y = \sqrt {x,} $$ $$2y - x + 3 = 0,$$ $$x$$-axis, and lying in the first quadrant is :
A
$$9$$
B
$$36$$
C
$$18$$
D
$${{27} \over 4}$$
3
JEE Main 2013 (Offline)
MCQ (Single Correct Answer)
+4
-1
Statement-1 : The value of the integral
$$\int\limits_{\pi /6}^{\pi /3} {{{dx} \over {1 + \sqrt {\tan \,x} }}} $$ is equal to $$\pi /6$$

Statement-2 : $$\int\limits_a^b {f\left( x \right)} dx = \int\limits_a^b {f\left( {a + b - x} \right)} dx.$$

A
Statement-1 is true, Statement-2 is true; Statement-2 is a correct explanation for Statement-1.
B
Statement-1 is true, Statement-2 is true; Statement-2 is not a correct explanation for Statement-1.
C
Statement- 1 is true; Statement-2 is False.
D
Statement-1 is false; Statement-2 is true.
4
JEE Main 2013 (Offline)
MCQ (Single Correct Answer)
+4
-1
If $$\int {f\left( x \right)dx = \psi \left( x \right),} $$ then $$\int {{x^5}f\left( {{x^3}} \right)dx} $$ is equal to
A
$${1 \over 3}\left[ {{x^3}\psi \left( {{x^3}} \right) - \int {{x^2}\psi \left( {{x^3}} \right)dx} } \right] + C$$
B
$${1 \over 3}{x^3}\psi \left( {{x^3}} \right) - 3\int {{x^3}\psi \left( {{x^3}} \right)dx} + C$$
C
$${1 \over 3}{x^3}\psi \left( {{x^3}} \right) - \int {{x^2}\psi \left( {{x^3}} \right)dx} + C$$
D
$${1 \over 3}\left[ {{x^3}\psi \left( {{x^3}} \right) - \int {{x^3}\psi \left( {{x^3}} \right)dx} } \right] + C$$
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12