1
AIEEE 2011
MCQ (Single Correct Answer)
+4
-1
The number of values of $$k$$ for which the linear equations
$$4x + ky + 2z = 0,kx + 4y + z = 0$$ and $$2x+2y+z=0$$ possess a non-zero solution is :
A
$$2$$
B
$$1$$
C
zero
D
$$3$$
2
AIEEE 2011
MCQ (Single Correct Answer)
+4
-1
Let $$A$$ and $$B$$ be two symmetric matrices of order $$3$$.

Statement - 1 : $$A(BA)$$ and $$(AB)$$$$A$$ are symmetric matrices.

Statement - 2 : $$AB$$ is symmetric matrix if matrix multiplication of $$A$$ with $$B$$ is commutative.
A
statement - 1 is true, statement - 2 is true; statement - 2 is not a correct explanation for statement - 1.
B
statement - 1 is true, statement - 2 is false.
C
statement - 1 is false, statement -2 is true
D
statement -1 is true, statement - 2 is true; statement - 2 is a correct explanation for statement - 1.
3
AIEEE 2011
MCQ (Single Correct Answer)
+4
-1
$${{{d^2}x} \over {d{y^2}}}$$ equals:
A
$$ - {\left( {{{{d^2}y} \over {d{x^2}}}} \right)^{ - 1}}{\left( {{{dy} \over {dx}}} \right)^{ - 3}}$$
B
$${\left( {{{{d^2}y} \over {d{x^2}}}} \right)^{}}{\left( {{{dy} \over {dx}}} \right)^{ - 2}}$$
C
$$ - \left( {{{{d^2}y} \over {d{x^2}}}} \right){\left( {{{dy} \over {dx}}} \right)^{ - 3}}$$
D
$${\left( {{{{d^2}y} \over {d{x^2}}}} \right)^{ - 1}}$$
4
AIEEE 2011
MCQ (Single Correct Answer)
+4
-1
Equation of the ellipse whose axes of coordinates and which passes through the point $$(-3,1)$$ and has eccentricity $$\sqrt {{2 \over 5}} $$ is :
A
$$5{x^2} + 3{y^2} - 48 = 0$$
B
$$3{x^2} + 5{y^2} - 15 = 0$$
C
$$5{x^2} + 3{y^2} - 32 = 0$$
D
$$3{x^2} + 5{y^2} - 32 = 0$$
JEE Main Papers
2023
2021
EXAM MAP