1
AIEEE 2011
MCQ (Single Correct Answer)
+4
-1
$$\mathop {\lim }\limits_{x \to 2} \left( {{{\sqrt {1 - \cos \left\{ {2(x - 2)} \right\}} } \over {x - 2}}} \right)$$
A
Equals $$\sqrt 2 $$
B
Equals $$-\sqrt 2 $$
C
Equals $${1 \over {\sqrt 2 }}$$
D
does not exist
2
AIEEE 2011
MCQ (Single Correct Answer)
+4
-1
The domain of the function f(x) = $${1 \over {\sqrt {\left| x \right| - x} }}$$ is
A
$$\left( {0,\infty } \right)$$
B
$$\left( { - \infty ,0} \right)$$
C
$$\left( { - \infty ,\infty } \right) - \left\{ 0 \right\}$$
D
$$\left( { - \infty ,\infty } \right)$$
3
AIEEE 2011
MCQ (Single Correct Answer)
+4
-1
Let $$\alpha \,,\beta $$ be real and z be a complex number. If $${z^2} + \alpha z + \beta = 0$$ has two distinct roots on the line Re z = 1, then it is necessary that :
A
$$\beta \, \in ( - 1,0)$$
B
$$\left| {\beta \,} \right| = 1$$
C
$$\beta \, \in (1,\infty )$$
D
$$\beta \, \in (0,1)$$
4
AIEEE 2011
MCQ (Single Correct Answer)
+4
-1
For $$x \in \left( {0,{{5\pi } \over 2}} \right),$$ define $$f\left( x \right) = \int\limits_0^x {\sqrt t \sin t\,dt.} $$ Then $$f$$ has
A
local minimum at $$\pi $$ and $$2\pi $$
B
local minimum at $$\pi $$ and local maximum at $$2\pi $$
C
local maximum at $$\pi $$ and local minimum at $$2\pi $$
D
local maximum at $$\pi $$ and $$2\pi $$
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12