1
AIEEE 2009
MCQ (Single Correct Answer)
+4
-1
One ticket is selected at random from $$50$$ tickets numbered $$00, 01, 02, ...., 49.$$ Then the probability that the sum of the digits on the selected ticket is $$8$$, given that the product of these digits is zer, equals :
A
$${1 \over 7}$$
B
$${5 \over 14}$$
C
$${1 \over 50}$$
D
$${1 \over 14}$$
2
AIEEE 2009
MCQ (Single Correct Answer)
+4
-1
$$\int\limits_0^\pi {\left[ {\cot x} \right]dx,} $$ where $$\left[ . \right]$$ denotes the greatest integer function, is equal to:
A
$$1$$
B
$$-1$$
C
$$ - {\pi \over 2}$$
D
$$ {\pi \over 2}$$
3
AIEEE 2009
MCQ (Single Correct Answer)
+4
-1
The area of the region bounded by the parabola $${\left( {y - 2} \right)^2} = x - 1,$$ the tangent of the parabola at the point $$(2, 3)$$ and the $$x$$-axis is :
A
$$6$$
B
$$9$$
C
$$12$$
D
$$3$$
4
AIEEE 2009
MCQ (Single Correct Answer)
+4
-1
Let $$a, b, c$$ be such that $$b\left( {a + c} \right) \ne 0$$ if

$$\left| {\matrix{ a & {a + 1} & {a - 1} \cr { - b} & {b + 1} & {b - 1} \cr c & {c - 1} & {c + 1} \cr } } \right| + \left| {\matrix{ {a + 1} & {b + 1} & {c - 1} \cr {a - 1} & {b - 1} & {c + 1} \cr {{{\left( { - 1} \right)}^{n + 2}}a} & {{{\left( { - 1} \right)}^{n + 1}}b} & {{{\left( { - 1} \right)}^n}c} \cr } } \right| = 0$$

then the value of $$n$$ :

A
any even integer
B
any odd integer
C
any integer
D
zero
JEE Main Papers
2023
2021
EXAM MAP