1
AIEEE 2002
MCQ (Single Correct Answer)
+4
-1
Change Language
$$\int_{ - \pi }^\pi {{{2x\left( {1 + \sin x} \right)} \over {1 + {{\cos }^2}x}}} dx$$ is
A
$${{{\pi ^2}} \over 4}$$
B
$${{\pi ^2}}$$
C
zero
D
$${\pi \over 2}$$
2
AIEEE 2002
MCQ (Single Correct Answer)
+4
-1
Change Language
The equation of a circle with origin as a center and passing through an equilateral triangle whose median is of length $$3$$$$a$$ is :
A
$${x^2}\, + \,{y^2} = 9{a^2}$$
B
$${x^2}\, + \,{y^2} = 16{a^2}$$
C
$${x^2}\, + \,{y^2} = 4{a^2}$$
D
$${x^2}\, + \,{y^2} = {a^2}$$
3
AIEEE 2002
MCQ (Single Correct Answer)
+4
-1
Change Language
The area bounded by the curves $$y = \ln x,y = \ln \left| x \right|,y = \left| {\ln {\mkern 1mu} x} \right|$$ and $$y = \left| {\ln \left| x \right|} \right|$$ is :
A
$$4$$sq. units
B
$$6$$sq. units
C
$$10$$sq. units
D
none of these
4
AIEEE 2002
MCQ (Single Correct Answer)
+4
-1
Change Language
The solution of the equation $$\,{{{d^2}y} \over {d{x^2}}} = {e^{ - 2x}}$$
A
$${{{e^{ - 2x}}} \over 4}$$
B
$${{{e^{ - 2x}}} \over 4} + cx + d$$
C
$${1 \over 4}{e^{ - 2x}} + c{x^2} + d$$
D
$$\,{1 \over 4}{e^{ - 4x}} + cx + d$$
JEE Main Papers
2023
2021
EXAM MAP