1
AIEEE 2002
MCQ (Single Correct Answer)
+4
-1
Change Language
If $$y = {\left( {x + \sqrt {1 + {x^2}} } \right)^n},$$ then $$\left( {1 + {x^2}} \right){{{d^2}y} \over {d{x^2}}} + x{{dy} \over {dx}}$$ is
A
$${n^2}y$$
B
$$-{n^2}y$$
C
$$-y$$
D
$$2{x^2}y$$
2
AIEEE 2002
MCQ (Single Correct Answer)
+4
-1
Change Language
$${\cot ^{ - 1}}\left( {\sqrt {\cos \alpha } } \right) - {\tan ^{ - 1}}\left( {\sqrt {\cos \alpha } } \right) = x,$$ then sin x is equal to :
A
$${\tan ^2}\left( {{\alpha \over 2}} \right)$$
B
$${\cot ^2}\left( {{\alpha \over 2}} \right)$$
C
$$\tan \alpha $$
D
$$cot\left( {{\alpha \over 2}} \right)$$
3
AIEEE 2002
MCQ (Single Correct Answer)
+4
-1
Change Language
The maximum distance from origin of a point on the curve
$$x = a\sin t - b\sin \left( {{{at} \over b}} \right)$$
$$y = a\cos t - b\cos \left( {{{at} \over b}} \right),$$ both $$a,b > 0$$ is
A
$$a-b$$
B
$$a+b$$
C
$$\sqrt {{a^2} + {b^2}} $$
D
$$\sqrt {{a^2} - {b^2}} $$
4
AIEEE 2002
MCQ (Single Correct Answer)
+4
-1
Change Language
If $$a>0$$ and discriminant of $$\,a{x^2} + 2bx + c$$ is $$-ve$$, then
$$\left| {\matrix{ a & b & {ax + b} \cr b & c & {bx + c} \cr {ax + b} & {bx + c} & 0 \cr } } \right|$$ is equal to
A
$$+ve$$
B
$$\left( {ac - {b^2}} \right)\left( {a{x^2} + 2bx + c} \right)$$
C
$$-ve$$
D
$$0$$
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12