1
AIEEE 2002
MCQ (Single Correct Answer)
+4
-1
Change Language
$${\cot ^{ - 1}}\left( {\sqrt {\cos \alpha } } \right) - {\tan ^{ - 1}}\left( {\sqrt {\cos \alpha } } \right) = x,$$ then sin x is equal to :
A
$${\tan ^2}\left( {{\alpha \over 2}} \right)$$
B
$${\cot ^2}\left( {{\alpha \over 2}} \right)$$
C
$$\tan \alpha $$
D
$$cot\left( {{\alpha \over 2}} \right)$$
2
AIEEE 2002
MCQ (Single Correct Answer)
+4
-1
Change Language
The maximum distance from origin of a point on the curve
$$x = a\sin t - b\sin \left( {{{at} \over b}} \right)$$
$$y = a\cos t - b\cos \left( {{{at} \over b}} \right),$$ both $$a,b > 0$$ is
A
$$a-b$$
B
$$a+b$$
C
$$\sqrt {{a^2} + {b^2}} $$
D
$$\sqrt {{a^2} - {b^2}} $$
3
AIEEE 2002
MCQ (Single Correct Answer)
+4
-1
Change Language
If $$a>0$$ and discriminant of $$\,a{x^2} + 2bx + c$$ is $$-ve$$, then
$$\left| {\matrix{ a & b & {ax + b} \cr b & c & {bx + c} \cr {ax + b} & {bx + c} & 0 \cr } } \right|$$ is equal to
A
$$+ve$$
B
$$\left( {ac - {b^2}} \right)\left( {a{x^2} + 2bx + c} \right)$$
C
$$-ve$$
D
$$0$$
4
AIEEE 2002
MCQ (Single Correct Answer)
+4
-1
Change Language
$${I_n} = \int\limits_0^{\pi /4} {{{\tan }^n}x\,dx} $$ then $$\,\mathop {\lim }\limits_{n \to \infty } \,n\left[ {{I_n} + {I_{n + 2}}} \right]$$ equals
A
$${1 \over 2}$$
B
$$1$$
C
$$\infty $$
D
zero
JEE Main Papers
2023
2021
EXAM MAP