1
AIEEE 2002
MCQ (Single Correct Answer)
+4
-1
Change Language
Locus of mid point of the portion between the axes of

$$x$$ $$cos$$ $$\alpha + y\,\sin \alpha = p$$ where $$p$$ is constant is :
A
$${x^2} + {y^2} = {4 \over {{p^2}}}$$
B
$${x^2} + {y^2} = 4{p^2}$$
C
$${1 \over {{x^2}}} + {1 \over {{y^2}}} = {2 \over {{p^2}}}$$
D
$${1 \over {{x^2}}} + {1 \over {{y^2}}} = {4 \over {{p^2}}}$$
2
AIEEE 2002
MCQ (Single Correct Answer)
+4
-1
Change Language
If $$y=f(x)$$ makes +$$ve$$ intercept of $$2$$ and $$0$$ unit on $$x$$ and $$y$$ axes and encloses an area of $$3/4$$ square unit with the axes then $$\int\limits_0^2 {xf'\left( x \right)dx} $$ is
A
$$3/2$$
B
$$1$$
C
$$5/4$$
D
$$-3/4$$
3
AIEEE 2002
MCQ (Single Correct Answer)
+4
-1
Change Language
If $$y = {\left( {x + \sqrt {1 + {x^2}} } \right)^n},$$ then $$\left( {1 + {x^2}} \right){{{d^2}y} \over {d{x^2}}} + x{{dy} \over {dx}}$$ is
A
$${n^2}y$$
B
$$-{n^2}y$$
C
$$-y$$
D
$$2{x^2}y$$
4
AIEEE 2002
MCQ (Single Correct Answer)
+4
-1
Change Language
$${\cot ^{ - 1}}\left( {\sqrt {\cos \alpha } } \right) - {\tan ^{ - 1}}\left( {\sqrt {\cos \alpha } } \right) = x,$$ then sin x is equal to :
A
$${\tan ^2}\left( {{\alpha \over 2}} \right)$$
B
$${\cot ^2}\left( {{\alpha \over 2}} \right)$$
C
$$\tan \alpha $$
D
$$cot\left( {{\alpha \over 2}} \right)$$
JEE Main Papers
2023
2021
EXAM MAP