Two trains 'A' and 'B' of length '$$l$$' and '$$4 l$$' are travelling into a tunnel of length '$$\mathrm{L}$$' in parallel tracks from opposite directions with velocities $$108 \mathrm{~km} / \mathrm{h}$$ and $$72 \mathrm{~km} / \mathrm{h}$$, respectively. If train 'A' takes $$35 \mathrm{~s}$$ less time than train 'B' to cross the tunnel then. length '$$L$$' of tunnel is :

(Given $$\mathrm{L}=60 l$$ )

A ball is thrown vertically upward with an initial velocity of $$150 \mathrm{~m} / \mathrm{s}$$. The ratio of velocity after $$3 \mathrm{~s}$$ and $$5 \mathrm{~s}$$ is $$\frac{x+1}{x}$$. The value of $$x$$ is ___________.

$$\left\{\right.$$ take, $$\left.g=10 \mathrm{~m} / \mathrm{s}^{2}\right\}$$

A projectile is projected at $$30^{\circ}$$ from horizontal with initial velocity $$40 \mathrm{~ms}^{-1}$$. The velocity of the projectile at $$\mathrm{t}=2 \mathrm{~s}$$ from the start will be : (Given $$g=10 \mathrm{~m} / \mathrm{s}^{2}$$ )

From the $$\mathrm{v}-t$$ graph shown, the ratio of distance to displacement in $$25 \mathrm{~s}$$ of motion is: