A juggler throws balls vertically upwards with same initial velocity in air. When the first ball reaches its highest position, he throws the next ball. Assuming the juggler throws n balls per second, the maximum height the balls can reach is

A ball is released from a height h. If $$t_{1}$$ and $$t_{2}$$ be the time required to complete first half and second half of the distance respectively. Then, choose the correct relation between $$t_{1}$$ and $$t_{2}$$.

A ball is thrown up vertically with a certain velocity so that, it reaches a maximum height h. Find the ratio of the times in which it is at height $$\frac{h}{3}$$ while going up and coming down respectively.

If $$\mathrm{t}=\sqrt{x}+4$$, then $$\left(\frac{\mathrm{d} x}{\mathrm{~d} t}\right)_{\mathrm{t}=4}$$ is :