1
JEE Main 2025 (Online) 29th January Evening Shift
Numerical
+4
-1

Let $y^2=12 x$ be the parabola and $S$ be its focus. Let $P Q$ be a focal chord of the parabola such that $(S P)(S Q)=\frac{147}{4}$. Let $C$ be the circle described taking $P Q$ as a diameter. If the equation of a circle $C$ is $64 x^2+64 y^2-\alpha x-64 \sqrt{3} y=\beta$, then $\beta-\alpha$ is equal to $\qquad$ .

Your input ____
2
JEE Main 2025 (Online) 29th January Evening Shift
Numerical
+4
-1
Let integers $\mathrm{a}, \mathrm{b} \in[-3,3]$ be such that $\mathrm{a}+\mathrm{b} \neq 0$. Then the number of all possible ordered pairs (a, b), for which $\left|\frac{z-\mathrm{a}}{z+\mathrm{b}}\right|=1$ and $\left|\begin{array}{ccc}z+1 & \omega & \omega^2 \\ \omega & z+\omega^2 & 1 \\ \omega^2 & 1 & z+\omega\end{array}\right|=1, z \in \mathrm{C}$, where $\omega$ and $\omega^2$ are the roots of $x^2+x+1=0$, is equal to _____________ .
Your input ____
3
JEE Main 2025 (Online) 29th January Evening Shift
Numerical
+4
-1
If $\lim\limits _{t \rightarrow 0}\left(\int\limits_0^1(3 x+5)^t d x\right)^{\frac{1}{t}}=\frac{\alpha}{5 e}\left(\frac{8}{5}\right)^{\frac{2}{3}}$, then $\alpha$ is equal to ________________.
Your input ____
4
JEE Main 2025 (Online) 29th January Evening Shift
Numerical
+4
-1

Let $a_1, a_2, \ldots, a_{2024}$ be an Arithmetic Progression such that $a_1+\left(a_5+a_{10}+a_{15}+\ldots+a_{2020}\right)+a_{2024}=2233$. Then $a_1+a_2+a_3+\ldots+a_{2024}$ is equal to _________.

Your input ____
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12