1
JEE Main 2025 (Online) 29th January Evening Shift
Numerical
+4
-1
Change Language

Let $y^2=12 x$ be the parabola and $S$ be its focus. Let $P Q$ be a focal chord of the parabola such that $(S P)(S Q)=\frac{147}{4}$. Let $C$ be the circle described taking $P Q$ as a diameter. If the equation of a circle $C$ is $64 x^2+64 y^2-\alpha x-64 \sqrt{3} y=\beta$, then $\beta-\alpha$ is equal to $\qquad$ .

Your input ____
2
JEE Main 2025 (Online) 29th January Evening Shift
Numerical
+4
-1
Change Language
Let integers $\mathrm{a}, \mathrm{b} \in[-3,3]$ be such that $\mathrm{a}+\mathrm{b} \neq 0$. Then the number of all possible ordered pairs (a, b), for which $\left|\frac{z-\mathrm{a}}{z+\mathrm{b}}\right|=1$ and $\left|\begin{array}{ccc}z+1 & \omega & \omega^2 \\ \omega & z+\omega^2 & 1 \\ \omega^2 & 1 & z+\omega\end{array}\right|=1, z \in \mathrm{C}$, where $\omega$ and $\omega^2$ are the roots of $x^2+x+1=0$, is equal to _____________ .
Your input ____
3
JEE Main 2025 (Online) 29th January Evening Shift
Numerical
+4
-1
Change Language
If $\lim\limits _{t \rightarrow 0}\left(\int\limits_0^1(3 x+5)^t d x\right)^{\frac{1}{t}}=\frac{\alpha}{5 e}\left(\frac{8}{5}\right)^{\frac{2}{3}}$, then $\alpha$ is equal to ________________.
Your input ____
4
JEE Main 2025 (Online) 29th January Evening Shift
Numerical
+4
-1
Change Language

Let $a_1, a_2, \ldots, a_{2024}$ be an Arithmetic Progression such that $a_1+\left(a_5+a_{10}+a_{15}+\ldots+a_{2020}\right)+a_{2024}=2233$. Then $a_1+a_2+a_3+\ldots+a_{2024}$ is equal to _________.

Your input ____
JEE Main Papers
2023
2021
EXAM MAP