1
JEE Main 2025 (Online) 29th January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $ \hat{a} $ be a unit vector perpendicular to the vectors $ \vec{b} = \hat{i} - 2\hat{j} + 3\hat{k} $ and $ \vec{c} = 2\hat{i} + 3\hat{j} - \hat{k} $, and $ \hat{a} $ makes an angle of $ \cos^{-1} \left( -\frac{1}{3} \right) $ with the vector $ \hat{i} + \hat{j} + \hat{k} $. If $ \hat{a} $ makes an angle of $ \frac{\pi}{3} $ with the vector $ \hat{i} + \alpha\hat{j} + \hat{k} $, then the value of $ a $ is:

A

$ \sqrt{3} $

B

$ \sqrt{6} $

C

$ -\sqrt{6} $

D

$ -\sqrt{3} $

2
JEE Main 2025 (Online) 29th January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $ \alpha, \beta \ (\alpha \neq \beta) $ be the values of $ m $, for which the equations $ x+y+z=1 $, $ x+2y+4z=m $ and $ x+4y+10z=m^2 $ have infinitely many solutions. Then the value of $ \sum\limits_{n=1}^{10} (n^{\alpha}+n^{\beta}) $ is equal to :

A

3410

B

560

C

3080

D

440

3
JEE Main 2025 (Online) 29th January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
If the set of all $a \in \mathbf{R}$, for which the equation $2 x^2+(a-5) x+15=3 a$ has no real root, is the interval ( $\alpha, \beta$ ), and $X=|x \in Z ; \alpha < x < \beta|$, then $\sum\limits_{x \in X} x^2$ is equal to:
A

2139

B

2119

C

2109

D

2129

4
JEE Main 2025 (Online) 29th January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let the line x + y = 1 meet the axes of x and y at A and B, respectively. A right angled triangle AMN is inscribed in the triangle OAB, where O is the origin and the points M and N lie on the lines OB and AB, respectively. If the area of the triangle AMN is $ \frac{4}{9} $ of the area of the triangle OAB and AN : NB = $ \lambda : 1 $, then the sum of all possible value(s) of $ \lambda $ is:

A

$\frac{1}{2}$

B

$\frac{5}{2}$

C

2

D

$\frac{13}{6}$

JEE Main Papers
2023
2021
EXAM MAP