Let $A = [a_{ij}]$ be a $2 \times 2$ matrix such that $a_{ij} \in \{0, 1\}$ for all $i$ and $j$. Let the random variable $X$ denote the possible values of the determinant of the matrix $A$. Then, the variance of $X$ is:
Let a straight line $L$ pass through the point $P(2, -1, 3)$ and be perpendicular to the lines $ \frac{x - 1}{2} = \frac{y + 1}{1} = \frac{z - 3}{-2} $ and $ \frac{x - 3}{1} = \frac{y - 2}{3} = \frac{z + 2}{4} $. If the line $L$ intersects the $yz$-plane at the point $Q$, then the distance between the points $P$ and $Q$ is:
If the domain of the function $ \log_5(18x - x^2 - 77) $ is $ (\alpha, \beta) $ and the domain of the function $ \log_{(x-1)} \left( \frac{2x^2 + 3x - 2}{x^2 - 3x - 4} \right) $ is $(\gamma, \delta)$, then $ \alpha^2 + \beta^2 + \gamma^2 $ is equal to:
Let $ \hat{a} $ be a unit vector perpendicular to the vectors $ \vec{b} = \hat{i} - 2\hat{j} + 3\hat{k} $ and $ \vec{c} = 2\hat{i} + 3\hat{j} - \hat{k} $, and $ \hat{a} $ makes an angle of $ \cos^{-1} \left( -\frac{1}{3} \right) $ with the vector $ \hat{i} + \hat{j} + \hat{k} $. If $ \hat{a} $ makes an angle of $ \frac{\pi}{3} $ with the vector $ \hat{i} + \alpha\hat{j} + \hat{k} $, then the value of $ a $ is: