1
JEE Main 2025 (Online) 29th January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $A = [a_{ij}]$ be a $2 \times 2$ matrix such that $a_{ij} \in \{0, 1\}$ for all $i$ and $j$. Let the random variable $X$ denote the possible values of the determinant of the matrix $A$. Then, the variance of $X$ is:

A

$\frac{5}{8}$

B

$\frac{1}{4}$

C

$\frac{3}{4}$

D

$\frac{3}{8}$

2
JEE Main 2025 (Online) 29th January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let a straight line $L$ pass through the point $P(2, -1, 3)$ and be perpendicular to the lines $ \frac{x - 1}{2} = \frac{y + 1}{1} = \frac{z - 3}{-2} $ and $ \frac{x - 3}{1} = \frac{y - 2}{3} = \frac{z + 2}{4} $. If the line $L$ intersects the $yz$-plane at the point $Q$, then the distance between the points $P$ and $Q$ is:

A

$\sqrt{10}$

B

$2$

C

$2\sqrt{3}$

D

$3$

3
JEE Main 2025 (Online) 29th January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If the domain of the function $ \log_5(18x - x^2 - 77) $ is $ (\alpha, \beta) $ and the domain of the function $ \log_{(x-1)} \left( \frac{2x^2 + 3x - 2}{x^2 - 3x - 4} \right) $ is $(\gamma, \delta)$, then $ \alpha^2 + \beta^2 + \gamma^2 $ is equal to:

A

186

B

179

C

195

D

174

4
JEE Main 2025 (Online) 29th January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $ \hat{a} $ be a unit vector perpendicular to the vectors $ \vec{b} = \hat{i} - 2\hat{j} + 3\hat{k} $ and $ \vec{c} = 2\hat{i} + 3\hat{j} - \hat{k} $, and $ \hat{a} $ makes an angle of $ \cos^{-1} \left( -\frac{1}{3} \right) $ with the vector $ \hat{i} + \hat{j} + \hat{k} $. If $ \hat{a} $ makes an angle of $ \frac{\pi}{3} $ with the vector $ \hat{i} + \alpha\hat{j} + \hat{k} $, then the value of $ a $ is:

A

$ \sqrt{3} $

B

$ \sqrt{6} $

C

$ -\sqrt{6} $

D

$ -\sqrt{3} $

JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12