$$\lim _\limits{x \rightarrow \frac{\pi}{2}}\left(\frac{\int_{x^3}^{(\pi / 2)^3}\left(\sin \left(2 t^{1 / 3}\right)+\cos \left(t^{1 / 3}\right)\right) d t}{\left(x-\frac{\pi}{2}\right)^2}\right)$$ is equal to
The value of the integral $$\int_\limits{-1}^2 \log _e\left(x+\sqrt{x^2+1}\right) d x$$ is
Between the following two statements:
Statement I : Let $$\vec{a}=\hat{i}+2 \hat{j}-3 \hat{k}$$ and $$\vec{b}=2 \hat{i}+\hat{j}-\hat{k}$$. Then the vector $$\vec{r}$$ satisfying $$\vec{a} \times \vec{r}=\vec{a} \times \vec{b}$$ and $$\vec{a} \cdot \vec{r}=0$$ is of magnitude $$\sqrt{10}$$.
Statement II : In a triangle $$A B C, \cos 2 A+\cos 2 B+\cos 2 C \geq-\frac{3}{2}$$.
If the variance of the frequency distribution
$$x$$ | $$c$$ | $$2c$$ | $$3c$$ | $$4c$$ | $$5c$$ | $$6c$$ |
---|---|---|---|---|---|---|
$$f$$ | 2 | 1 | 1 | 1 | 1 | 1 |
is 160, then the value of $$c\in N$$ is