1
JEE Main 2024 (Online) 9th April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If an unbiased dice is rolled thrice, then the probability of getting a greater number in the $$i^{\text {th }}$$ roll than the number obtained in the $$(i-1)^{\text {th }}$$ roll, $$i=2,3$$, is equal to

A
5/54
B
2/54
C
1/54
D
3/54
2
JEE Main 2024 (Online) 9th April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

$$\lim _\limits{x \rightarrow \frac{\pi}{2}}\left(\frac{\int_{x^3}^{(\pi / 2)^3}\left(\sin \left(2 t^{1 / 3}\right)+\cos \left(t^{1 / 3}\right)\right) d t}{\left(x-\frac{\pi}{2}\right)^2}\right)$$ is equal to

A
$$\frac{3 \pi^2}{2}$$
B
$$\frac{9 \pi^2}{8}$$
C
$$\frac{5 \pi^2}{9}$$
D
$$\frac{11 \pi^2}{10}$$
3
JEE Main 2024 (Online) 9th April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The value of the integral $$\int_\limits{-1}^2 \log _e\left(x+\sqrt{x^2+1}\right) d x$$ is

A
$$\sqrt{5}-\sqrt{2}+\log _e\left(\frac{7+4 \sqrt{5}}{1+\sqrt{2}}\right)$$
B
$$\sqrt{2}-\sqrt{5}+\log _e\left(\frac{7+4 \sqrt{5}}{1+\sqrt{2}}\right)$$
C
$$\sqrt{5}-\sqrt{2}+\log _e\left(\frac{9+4 \sqrt{5}}{1+\sqrt{2}}\right)$$
D
$$\sqrt{2}-\sqrt{5}+\log _e\left(\frac{9+4 \sqrt{5}}{1+\sqrt{2}}\right)$$
4
JEE Main 2024 (Online) 9th April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Between the following two statements:

Statement I : Let $$\vec{a}=\hat{i}+2 \hat{j}-3 \hat{k}$$ and $$\vec{b}=2 \hat{i}+\hat{j}-\hat{k}$$. Then the vector $$\vec{r}$$ satisfying $$\vec{a} \times \vec{r}=\vec{a} \times \vec{b}$$ and $$\vec{a} \cdot \vec{r}=0$$ is of magnitude $$\sqrt{10}$$.

Statement II : In a triangle $$A B C, \cos 2 A+\cos 2 B+\cos 2 C \geq-\frac{3}{2}$$.

A
Both Statement I and Statement II are correct.
B
Both Statement I and Statement II are incorrect.
C
Statement I is correct but Statement II is incorrect.
D
Statement I is incorrect but Statement II is correct.
JEE Main Papers
2023
2021
EXAM MAP