The magnetic field in a plane electromagnetic wave is $$\mathrm{B}_{\mathrm{y}}=\left(3.5 \times 10^{-7}\right) \sin \left(1.5 \times 10^3 x+0.5 \times 10^{11} t\right) \mathrm{T}$$. The corresponding electric field will be :
A real gas within a closed chamber at $$27^{\circ} \mathrm{C}$$ undergoes the cyclic process as shown in figure. The gas obeys $$P V^3=R T$$ equation for the path $$A$$ to $$B$$. The net work done in the complete cycle is (assuming $$R=8 \mathrm{~J} / \mathrm{mol} \mathrm{K}$$):
Five charges $$+q,+5 q,-2 q,+3 q$$ and $$-4 q$$ are situated as shown in the figure. The electric flux due to this configuration through the surface $$S$$ is :
UV light of $$4.13 \mathrm{~eV}$$ is incident on a photosensitive metal surface having work function $$3.13 \mathrm{~eV}$$. The maximum kinetic energy of ejected photoelectrons will be: