The value of the integral $$\int_\limits{-1}^2 \log _e\left(x+\sqrt{x^2+1}\right) d x$$ is
Between the following two statements:
Statement I : Let $$\vec{a}=\hat{i}+2 \hat{j}-3 \hat{k}$$ and $$\vec{b}=2 \hat{i}+\hat{j}-\hat{k}$$. Then the vector $$\vec{r}$$ satisfying $$\vec{a} \times \vec{r}=\vec{a} \times \vec{b}$$ and $$\vec{a} \cdot \vec{r}=0$$ is of magnitude $$\sqrt{10}$$.
Statement II : In a triangle $$A B C, \cos 2 A+\cos 2 B+\cos 2 C \geq-\frac{3}{2}$$.
If the variance of the frequency distribution
$$x$$ | $$c$$ | $$2c$$ | $$3c$$ | $$4c$$ | $$5c$$ | $$6c$$ |
---|---|---|---|---|---|---|
$$f$$ | 2 | 1 | 1 | 1 | 1 | 1 |
is 160, then the value of $$c\in N$$ is
Let $$B=\left[\begin{array}{ll}1 & 3 \\ 1 & 5\end{array}\right]$$ and $$A$$ be a $$2 \times 2$$ matrix such that $$A B^{-1}=A^{-1}$$. If $$B C B^{-1}=A$$ and $$C^4+\alpha C^2+\beta I=O$$, then $$2 \beta-\alpha$$ is equal to