The sum of all possible values of $$\theta \in[-\pi, 2 \pi]$$, for which $$\frac{1+i \cos \theta}{1-2 i \cos \theta}$$ is purely imaginary, is equal to :
The number of ways five alphabets can be chosen from the alphabets of the word MATHEMATICS, where the chosen alphabets are not necessarily distinct, is equal to:
If the function $$f(x)=2 x^3-9 \mathrm{ax}^2+12 \mathrm{a}^2 x+1, \mathrm{a}> 0$$ has a local maximum at $$x=\alpha$$ and a local minimum at $$x=\alpha^2$$, then $$\alpha$$ and $$\alpha^2$$ are the roots of the equation :
If the value of $$\frac{3 \cos 36^{\circ}+5 \sin 18^{\circ}}{5 \cos 36^{\circ}-3 \sin 18^{\circ}}$$ is $$\frac{a \sqrt{5}-b}{c}$$, where $$a, b, c$$ are natural numbers and $$\operatorname{gcd}(a, c)=1$$, then $$a+b+c$$ is equal to :