For $$\mathrm{a}, \mathrm{b}>0$$, let $$f(x)= \begin{cases}\frac{\tan ((\mathrm{a}+1) x)+\mathrm{b} \tan x}{x}, & x< 0 \\ 3, & x=0 \\ \frac{\sqrt{\mathrm{a} x+\mathrm{b}^2 x^2}-\sqrt{\mathrm{a} x}}{\mathrm{~b} \sqrt{\mathrm{a}} x \sqrt{x}}, & x> 0\end{cases}$$ be a continuous function at $$x=0$$. Then $$\frac{\mathrm{b}}{\mathrm{a}}$$ is equal to :
Let $$A=\{2,3,6,8,9,11\}$$ and $$B=\{1,4,5,10,15\}$$. Let $$R$$ be a relation on $$A \times B$$ defined by $$(a, b) R(c, d)$$ if and only if $$3 a d-7 b c$$ is an even integer. Then the relation $$R$$ is
Let $$\overrightarrow{\mathrm{a}}=\hat{i}+2 \hat{j}+3 \hat{k}, \overrightarrow{\mathrm{b}}=2 \hat{i}+3 \hat{j}-5 \hat{k}$$ and $$\overrightarrow{\mathrm{c}}=3 \hat{i}-\hat{j}+\lambda \hat{k}$$ be three vectors. Let $$\overrightarrow{\mathrm{r}}$$ be a unit vector along $$\vec{b}+\vec{c}$$. If $$\vec{r} \cdot \vec{a}=3$$, then $$3 \lambda$$ is equal to:
The sum of all possible values of $$\theta \in[-\pi, 2 \pi]$$, for which $$\frac{1+i \cos \theta}{1-2 i \cos \theta}$$ is purely imaginary, is equal to :