1
JEE Main 2024 (Online) 8th April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If the system of equations $$x+4 y-z=\lambda, 7 x+9 y+\mu z=-3,5 x+y+2 z=-1$$ has infinitely many solutions, then $$(2 \mu+3 \lambda)$$ is equal to :

A
$$-2$$
B
2
C
3
D
$$-3$$
2
JEE Main 2024 (Online) 8th April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$f(x)=\left\{\begin{array}{ccc}-\mathrm{a} & \text { if } & -\mathrm{a} \leq x \leq 0 \\ x+\mathrm{a} & \text { if } & 0< x \leq \mathrm{a}\end{array}\right.$$ where $$\mathrm{a}> 0$$ and $$\mathrm{g}(x)=(f(|x|)-|f(x)|) / 2$$. Then the function $$g:[-a, a] \rightarrow[-a, a]$$ is

A
neither one-one nor onto.
B
both one-one and onto.
C
one-one.
D
onto
3
JEE Main 2024 (Online) 8th April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

In an increasing geometric progression of positive terms, the sum of the second and sixth terms is $$\frac{70}{3}$$ and the product of the third and fifth terms is 49. Then the sum of the $$4^{\text {th }}, 6^{\text {th }}$$ and $$8^{\text {th }}$$ terms is equal to:

A
78
B
96
C
91
D
84
4
JEE Main 2024 (Online) 8th April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

For $$\mathrm{a}, \mathrm{b}>0$$, let $$f(x)= \begin{cases}\frac{\tan ((\mathrm{a}+1) x)+\mathrm{b} \tan x}{x}, & x< 0 \\ 3, & x=0 \\ \frac{\sqrt{\mathrm{a} x+\mathrm{b}^2 x^2}-\sqrt{\mathrm{a} x}}{\mathrm{~b} \sqrt{\mathrm{a}} x \sqrt{x}}, & x> 0\end{cases}$$ be a continuous function at $$x=0$$. Then $$\frac{\mathrm{b}}{\mathrm{a}}$$ is equal to :

A
4
B
5
C
8
D
6
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12