Let $$f(x)=\left\{\begin{array}{ccc}-\mathrm{a} & \text { if } & -\mathrm{a} \leq x \leq 0 \\ x+\mathrm{a} & \text { if } & 0< x \leq \mathrm{a}\end{array}\right.$$ where $$\mathrm{a}> 0$$ and $$\mathrm{g}(x)=(f(|x|)-|f(x)|) / 2$$. Then the function $$g:[-a, a] \rightarrow[-a, a]$$ is
In an increasing geometric progression of positive terms, the sum of the second and sixth terms is $$\frac{70}{3}$$ and the product of the third and fifth terms is 49. Then the sum of the $$4^{\text {th }}, 6^{\text {th }}$$ and $$8^{\text {th }}$$ terms is equal to:
For $$\mathrm{a}, \mathrm{b}>0$$, let $$f(x)= \begin{cases}\frac{\tan ((\mathrm{a}+1) x)+\mathrm{b} \tan x}{x}, & x< 0 \\ 3, & x=0 \\ \frac{\sqrt{\mathrm{a} x+\mathrm{b}^2 x^2}-\sqrt{\mathrm{a} x}}{\mathrm{~b} \sqrt{\mathrm{a}} x \sqrt{x}}, & x> 0\end{cases}$$ be a continuous function at $$x=0$$. Then $$\frac{\mathrm{b}}{\mathrm{a}}$$ is equal to :
Let $$A=\{2,3,6,8,9,11\}$$ and $$B=\{1,4,5,10,15\}$$. Let $$R$$ be a relation on $$A \times B$$ defined by $$(a, b) R(c, d)$$ if and only if $$3 a d-7 b c$$ is an even integer. Then the relation $$R$$ is