Let the point $$(p, p+1)$$ lie inside the region $$E=\left\{(x, y): 3-x \leq y \leq \sqrt{9-x^{2}}, 0 \leq x \leq 3\right\}$$. If the set of all values of $$\mathrm{p}$$ is the interval $$(a, b)$$, then $$b^{2}+b-a^{2}$$ is equal to ___________.
Let $$a \in \mathbb{Z}$$ and $$[\mathrm{t}]$$ be the greatest integer $$\leq \mathrm{t}$$. Then the number of points, where the function $$f(x)=[a+13 \sin x], x \in(0, \pi)$$ is not differentiable, is __________.
Let $$\mathrm{A}=\{1,2,3,4, \ldots ., 10\}$$ and $$\mathrm{B}=\{0,1,2,3,4\}$$. The number of elements in the relation $$R=\left\{(a, b) \in A \times A: 2(a-b)^{2}+3(a-b) \in B\right\}$$ is ___________.
A circle passing through the point $$P(\alpha, \beta)$$ in the first quadrant touches the two coordinate axes at the points $$A$$ and $$B$$. The point $$P$$ is above the line $$A B$$. The point $$Q$$ on the line segment $$A B$$ is the foot of perpendicular from $$P$$ on $$A B$$. If $$P Q$$ is equal to 11 units, then the value of $$\alpha \beta$$ is ___________.