1
JEE Main 2023 (Online) 6th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]_{2 \times 2}$$, where $$\mathrm{a}_{\mathrm{ij}} \neq 0$$ for all $$\mathrm{i}, \mathrm{j}$$ and $$\mathrm{A}^{2}=\mathrm{I}$$. Let a be the sum of all diagonal elements of $$\mathrm{A}$$ and $$\mathrm{b}=|\mathrm{A}|$$. Then $$3 a^{2}+4 b^{2}$$ is equal to :

A
4
B
3
C
14
D
7
2
JEE Main 2023 (Online) 6th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$5 f(x)+4 f\left(\frac{1}{x}\right)=\frac{1}{x}+3, x > 0$$. Then $$18 \int_\limits{1}^{2} f(x) d x$$ is equal to :

A
$$10 \log _{\mathrm{e}} 2+6$$
B
$$5 \log _{e} 2-3$$
C
$$10 \log _{\mathrm{e}} 2-6$$
D
$$5 \log _{\mathrm{e}} 2+3$$
3
JEE Main 2023 (Online) 6th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$I(x)=\int \frac{x^{2}\left(x \sec ^{2} x+\tan x\right)}{(x \tan x+1)^{2}} d x$$. If $$I(0)=0$$, then $$I\left(\frac{\pi}{4}\right)$$ is equal to :

A
$$\log _{e} \frac{(\pi+4)^{2}}{32}-\frac{\pi^{2}}{4(\pi+4)}$$
B
$$\log _{e} \frac{(\pi+4)^{2}}{16}-\frac{\pi^{2}}{4(\pi+4)}$$
C
$$\log _{e} \frac{(\pi+4)^{2}}{16}+\frac{\pi^{2}}{4(\pi+4)}$$
D
$$\log _{e} \frac{(\pi+4)^{2}}{32}+\frac{\pi^{2}}{4(\pi+4)}$$
4
JEE Main 2023 (Online) 6th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$\vec{a}=2 \hat{i}+3 \hat{j}+4 \hat{k}, \vec{b}=\hat{i}-2 \hat{j}-2 \hat{k}$$ and $$\vec{c}=-\hat{i}+4 \hat{j}+3 \hat{k}$$. If $$\vec{d}$$ is a vector perpendicular to both $$\vec{b}$$ and $$\vec{c}$$, and $$\vec{a} \cdot \vec{d}=18$$, then $$|\vec{a} \times \vec{d}|^{2}$$ is equal to :

A
680
B
720
C
760
D
640
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12