1
JEE Main 2023 (Online) 6th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$a_{1}, a_{2}, a_{3}, \ldots, a_{\mathrm{n}}$$ be $$\mathrm{n}$$ positive consecutive terms of an arithmetic progression. If $$\mathrm{d} > 0$$ is its common difference, then

$$\lim_\limits{n \rightarrow \infty} \sqrt{\frac{d}{n}}\left(\frac{1}{\sqrt{a_{1}}+\sqrt{a_{2}}}+\frac{1}{\sqrt{a_{2}}+\sqrt{a_{3}}}+\ldots \ldots \ldots+\frac{1}{\sqrt{a_{n-1}}+\sqrt{a_{n}}}\right)$$ is

A
$$\frac{1}{\sqrt{d}}$$
B
1
C
0
D
$$\sqrt{d}$$
2
JEE Main 2023 (Online) 6th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The sum of all the roots of the equation $$\left|x^{2}-8 x+15\right|-2 x+7=0$$ is :

A
$$11+\sqrt{3}$$
B
$$9+\sqrt{3}$$
C
$$9-\sqrt{3}$$
D
$$11-\sqrt{3}$$
3
JEE Main 2023 (Online) 6th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If the ratio of the fifth term from the beginning to the fifth term from the end in the expansion of $$\left(\sqrt[4]{2}+\frac{1}{\sqrt[4]{3}}\right)^{\mathrm{n}}$$ is $$\sqrt{6}: 1$$, then the third term from the beginning is :

A
$$30 \sqrt{2}$$
B
$$60 \sqrt{3}$$
C
$$60 \sqrt{2}$$
D
$$30 \sqrt{3}$$
4
JEE Main 2023 (Online) 6th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If $$2 x^{y}+3 y^{x}=20$$, then $$\frac{d y}{d x}$$ at $$(2,2)$$ is equal to :

A
$$-\left(\frac{3+\log _{e} 16}{4+\log _{e} 8}\right)$$
B
$$-\left(\frac{2+\log _{e} 8}{3+\log _{e} 4}\right)$$
C
$$-\left(\frac{3+\log _{e} 8}{2+\log _{e} 4}\right)$$
D
$$-\left(\frac{3+\log _{e} 4}{2+\log _{e} 8}\right)$$
JEE Main Papers
2023
2021
EXAM MAP