Let $$A = \{ x \in R:[x + 3] + [x + 4] \le 3\} ,$$
$$B = \left\{ {x \in R:{3^x}{{\left( {\sum\limits_{r = 1}^\infty {{3 \over {{{10}^r}}}} } \right)}^{x - 3}} < {3^{ - 3x}}} \right\},$$ where [t] denotes greatest integer function. Then,
If the system of equations
$$x+y+a z=b$$
$$2 x+5 y+2 z=6$$
$$x+2 y+3 z=3$$
has infinitely many solutions, then $$2 a+3 b$$ is equal to :
The straight lines $$\mathrm{l_{1}}$$ and $$\mathrm{l_{2}}$$ pass through the origin and trisect the line segment of the line L : $$9 x+5 y=45$$ between the axes. If $$\mathrm{m}_{1}$$ and $$\mathrm{m}_{2}$$ are the slopes of the lines $$\mathrm{l_{1}}$$ and $$\mathrm{l_{2}}$$, then the point of intersection of the line $$\mathrm{y=\left(m_{1}+m_{2}\right)}x$$ with L lies on :
One vertex of a rectangular parallelopiped is at the origin $$\mathrm{O}$$ and the lengths of its edges along $$x, y$$ and $$z$$ axes are $$3,4$$ and $$5$$ units respectively. Let $$\mathrm{P}$$ be the vertex $$(3,4,5)$$. Then the shortest distance between the diagonal OP and an edge parallel to $$\mathrm{z}$$ axis, not passing through $$\mathrm{O}$$ or $$\mathrm{P}$$ is :