A proton with a kinetic energy of $$2.0 ~\mathrm{eV}$$ moves into a region of uniform magnetic field of magnitude $$\frac{\pi}{2} \times 10^{-3} \mathrm{~T}$$. The angle between the direction of magnetic field and velocity of proton is $$60^{\circ}$$. The pitch of the helical path taken by the proton is __________ $$\mathrm{cm}$$. (Take, mass of proton $$=1.6 \times 10^{-27} \mathrm{~kg}$$ and Charge on proton $$=1.6 \times 10^{-19} \mathrm{C}$$ ).
A simple pendulum with length $$100 \mathrm{~cm}$$ and bob of mass $$250 \mathrm{~g}$$ is executing S.H.M. of amplitude $$10 \mathrm{~cm}$$. The maximum tension in the string is found to be $$\frac{x}{40} \mathrm{~N}$$. The value of $$x$$ is ___________.
A metal block of mass $$\mathrm{m}$$ is suspended from a rigid support through a metal wire of diameter $$14 \mathrm{~mm}$$. The tensile stress developed in the wire under equilibrium state is $$7 \times 10^{5} \mathrm{Nm}^{-2}$$. The value of mass $$\mathrm{m}$$ is _________ $$\mathrm{kg}$$. (Take, $$\mathrm{g}=9.8 \mathrm{~ms}^{-2}$$ and $$\pi=\frac{22}{7}$$ )
A ring and a solid sphere rotating about an axis passing through their centers have same radii of gyration. The axis of rotation is perpendicular to plane of ring. The ratio of radius of ring to that of sphere is $$\sqrt{\frac{2}{x}}$$. The value of $$x$$ is ___________.