$$\lim _\limits{n \rightarrow \infty}\left\{\left(2^{\frac{1}{2}}-2^{\frac{1}{3}}\right)\left(2^{\frac{1}{2}}-2^{\frac{1}{5}}\right) \ldots . .\left(2^{\frac{1}{2}}-2^{\frac{1}{2 n+1}}\right)\right\}$$ is equal to :
In a group of 100 persons 75 speak English and 40 speak Hindi. Each person speaks at least one of the two languages. If the number of persons, who speak only English is $$\alpha$$ and the number of persons who speak only Hindi is $$\beta$$, then the eccentricity of the ellipse $$25\left(\beta^{2} x^{2}+\alpha^{2} y^{2}\right)=\alpha^{2} \beta^{2}$$ is :
Three dice are rolled. If the probability of getting different numbers on the three dice is $$\frac{p}{q}$$, where $$p$$ and $$q$$ are co-prime, then $$q-p$$ is equal to :
For the system of equations
$$x+y+z=6$$
$$x+2 y+\alpha z=10$$
$$x+3 y+5 z=\beta$$, which one of the following is NOT true?