As shown in the figure, a particle is moving with constant speed $$\pi ~\mathrm{m} / \mathrm{s}$$. Considering its motion from $$\mathrm{A}$$ to $$\mathrm{B}$$, the magnitude of the average velocity is :
The work functions of Aluminium and Gold are $$4.1 ~\mathrm{eV}$$ and and $$5.1 ~\mathrm{eV}$$ respectively. The ratio of the slope of the stopping potential versus frequency plot for Gold to that of Aluminium is
A body cools in 7 minutes from $$60^{\circ} \mathrm{C}$$ to $$40^{\circ} \mathrm{C}$$. The temperature of the surrounding is $$10^{\circ} \mathrm{C}$$. The temperature of the body after the next 7 minutes will be:
A dipole comprises of two charged particles of identical magnitude $$q$$ and opposite in nature. The mass 'm' of the positive charged particle is half of the mass of the negative charged particle. The two charges are separated by a distance '$$l$$'. If the dipole is placed in a uniform electric field '$$\bar{E}$$'; in such a way that dipole axis makes a very small angle with the electric field, '$$\bar{E}$$'. The angular frequency of the oscillations of the dipole when released is given by: