A dipole comprises of two charged particles of identical magnitude $$q$$ and opposite in nature. The mass 'm' of the positive charged particle is half of the mass of the negative charged particle. The two charges are separated by a distance '$$l$$'. If the dipole is placed in a uniform electric field '$$\bar{E}$$'; in such a way that dipole axis makes a very small angle with the electric field, '$$\bar{E}$$'. The angular frequency of the oscillations of the dipole when released is given by:
The ratio of speed of sound in hydrogen gas to the speed of sound in oxygen gas at the same temperature is:
A student is provided with a variable voltage source $$\mathrm{V}$$, a test resistor $$R_{T}=10 ~\Omega$$, two identical galvanometers $$G_{1}$$ and $$G_{2}$$ and two additional resistors, $$R_{1}=10 ~M \Omega$$ and $$R_{2}=0.001 ~\Omega$$. For conducting an experiment to verify ohm's law, the most suitable circuit is:
A small particle of mass $$m$$ moves in such a way that its potential energy $$U=\frac{1}{2} m ~\omega^{2} r^{2}$$ where $$\omega$$ is constant and $$r$$ is the distance of the particle from origin. Assuming Bohr's quantization of momentum and circular orbit, the radius of $$n^{\text {th }}$$ orbit will be proportional to,