1
JEE Main 2023 (Online) 30th January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
Bond dissociation energy of "E-H" bond of the "$\mathrm{H}_{2} \mathrm{E}$ " hydrides of group 16 elements (given below), follows order.

A. $\mathrm{O}$

B. $\mathrm{S}$

C. Se

D. $\mathrm{Te}$

Choose the correct from the options given below:
A
$\mathrm{A}>\mathrm{B}>\mathrm{C}>\mathrm{D}$
B
$\mathrm{D}>\mathrm{C}>\mathrm{B}>\mathrm{A}$
C
$\mathrm{B}>\mathrm{A}>\mathrm{C}>\mathrm{D}$
D
$\mathrm{A}>\mathrm{B}>\mathrm{D}>\mathrm{C}$
2
JEE Main 2023 (Online) 30th January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
The correct order of $\mathrm{pK}_{\mathrm{a}}$ values for the following compounds is:

JEE Main 2023 (Online) 30th January Evening Shift Chemistry - Alcohols, Phenols and Ethers Question 49 English
A
$ \mathrm{a}>\mathrm{b}>\mathrm{c}>\mathrm{d}$
B
$c > a > d > b$
C
$\mathrm{b}>\mathrm{d}>\mathrm{a}>\mathrm{c}$
D
$b > a > d > c$
3
JEE Main 2023 (Online) 30th January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
$1 \mathrm{~L}, 0.02 \mathrm{M}$ solution of $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{SO}_{4}\right]$ Br is mixed with $1 \mathrm{~L}, 0.02 \mathrm{M}$ solution of $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Br}\right] \mathrm{SO}_{4}$. The resulting solution is divided into two equal parts $(\mathrm{X})$ and treated with excess of $\mathrm{AgNO}_{3}$ solution and $\mathrm{BaCl}_{2}$ solution respectively as shown below:

$1 \mathrm{~L}$ Solution $(\mathrm{X})+\mathrm{AgNO}_{3}$ solution (excess) $\longrightarrow \mathrm{Y}$

$1 \mathrm{~L}$ Solution $(\mathrm{X})+\mathrm{BaCl}_{2}$ solution (excess) $\longrightarrow \mathrm{Z}$

The number of moles of $\mathrm{Y}$ and $\mathrm{Z}$ respectively are
A
$0 .01,0.01$
B
$0.01,0.02$
C
$0.02,0.01$
D
$0.02,0.02$
4
JEE Main 2023 (Online) 30th January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
The wave function $(\Psi)$ of $2 \mathrm{~s}$ is given by

$$ \Psi_{2 \mathrm{~s}}=\frac{1}{2 \sqrt{2 \pi}}\left(\frac{1}{a_0}\right)^{1 / 2}\left(2-\frac{r}{a_0}\right) e^{-r / 2 a_0} $$

At $r=r_0$, radial node is formed. Thus, $r_0$ in terms of $a_0$
A
$r_0=a_0$
B
$r_0=4 a_0$
C
$r_0=2 a_0$
D
$r_0=\frac{a_0}{2}$
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12