1
JEE Main 2023 (Online) 30th January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
The number of ways of selecting two numbers $a$ and $b, a \in\{2,4,6, \ldots ., 100\}$ and $b \in\{1,3,5, \ldots . ., 99\}$ such that 2 is the remainder when $a+b$ is divided by 23 is :
A
186
B
54
C
108
D
268
2
JEE Main 2023 (Online) 30th January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
Let $S$ be the set of all values of $a_1$ for which the mean deviation about the mean of 100 consecutive positive integers $a_1, a_2, a_3, \ldots ., a_{100}$ is 25 . Then $S$ is :
A
$\{9\}$
B
$\phi$
C
$\{99\}$
D
N
3
JEE Main 2023 (Online) 30th January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
Let $a, b, c>1, a^3, b^3$ and $c^3$ be in A.P., and $\log _a b, \log _c a$ and $\log _b c$ be in G.P. If the sum of first 20 terms of an A.P., whose first term is $\frac{a+4 b+c}{3}$ and the common difference is $\frac{a-8 b+c}{10}$ is $-444$, then $a b c$ is equal to :
A
343
B
216
C
$\frac{343}{8}$
D
$\frac{125}{8}$
4
JEE Main 2023 (Online) 30th January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
Let $f, g$ and $h$ be the real valued functions defined on $\mathbb{R}$ as

$f(x)=\left\{\begin{array}{cc}\frac{x}{|x|}, & x \neq 0 \\ 1, & x=0\end{array}\right.$

$g(x)=\left\{\begin{array}{cc}\frac{\sin (x+1)}{(x+1)}, & x \neq-1 \\ 1, & x=-1\end{array}\right.$

and $h(x)=2[x]-f(x)$, where $[x]$ is the greatest integer $\leq x$. Then the

value of $\lim\limits_{x \rightarrow 1} g(h(x-1))$ is :
A
1
B
$-1$
C
$\sin (1)$
D
0
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12