1
JEE Main 2023 (Online) 30th January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
Let $f, g$ and $h$ be the real valued functions defined on $\mathbb{R}$ as

$f(x)=\left\{\begin{array}{cc}\frac{x}{|x|}, & x \neq 0 \\ 1, & x=0\end{array}\right.$

$g(x)=\left\{\begin{array}{cc}\frac{\sin (x+1)}{(x+1)}, & x \neq-1 \\ 1, & x=-1\end{array}\right.$

and $h(x)=2[x]-f(x)$, where $[x]$ is the greatest integer $\leq x$. Then the

value of $\lim\limits_{x \rightarrow 1} g(h(x-1))$ is :
A
1
B
$-1$
C
$\sin (1)$
D
0
2
JEE Main 2023 (Online) 30th January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
Let $q$ be the maximum integral value of $p$ in $[0,10]$ for which the roots of the equation $x^2-p x+\frac{5}{4} p=0$ are rational. Then the area of the region $\left\{(x, y): 0 \leq y \leq(x-q)^2, 0 \leq x \leq q\right\}$ is :
A
$\frac{125}{3}$
B
243
C
164
D
25
3
JEE Main 2023 (Online) 30th January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
If the functions $f(x)=\frac{x^3}{3}+2 b x+\frac{a x^2}{2}$

and $g(x)=\frac{x^3}{3}+a x+b x^2, a \neq 2 b$

have a common extreme point, then $a+2 b+7$ is equal to :
A
6
B
$\frac{3}{2}$
C
3
D
4
4
JEE Main 2023 (Online) 30th January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
The parabolas : $a x^2+2 b x+c y=0$ and $d x^2+2 e x+f y=0$ intersect on the line $y=1$. If $a, b, c, d, e, f$ are positive real numbers and $a, b, c$ are in G.P., then :
A
$\frac{d}{a}, \frac{e}{b}, \frac{f}{c}$ are in A.P.
B
$\frac{d}{a}, \frac{e}{b}, \frac{f}{c}$ are in G.P.
C
$d, e, f$ are in A.P.
D
$d, e, f$ are in G.P.
JEE Main Papers
2023
2021
EXAM MAP