1
JEE Main 2023 (Online) 30th January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
Let $f, g$ and $h$ be the real valued functions defined on $\mathbb{R}$ as

$f(x)=\left\{\begin{array}{cc}\frac{x}{|x|}, & x \neq 0 \\ 1, & x=0\end{array}\right.$

$g(x)=\left\{\begin{array}{cc}\frac{\sin (x+1)}{(x+1)}, & x \neq-1 \\ 1, & x=-1\end{array}\right.$

and $h(x)=2[x]-f(x)$, where $[x]$ is the greatest integer $\leq x$. Then the

value of $\lim\limits_{x \rightarrow 1} g(h(x-1))$ is :
A
1
B
$-1$
C
$\sin (1)$
D
0
2
JEE Main 2023 (Online) 30th January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
Let $q$ be the maximum integral value of $p$ in $[0,10]$ for which the roots of the equation $x^2-p x+\frac{5}{4} p=0$ are rational. Then the area of the region $\left\{(x, y): 0 \leq y \leq(x-q)^2, 0 \leq x \leq q\right\}$ is :
A
$\frac{125}{3}$
B
243
C
164
D
25
3
JEE Main 2023 (Online) 30th January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
If the functions $f(x)=\frac{x^3}{3}+2 b x+\frac{a x^2}{2}$

and $g(x)=\frac{x^3}{3}+a x+b x^2, a \neq 2 b$

have a common extreme point, then $a+2 b+7$ is equal to :
A
6
B
$\frac{3}{2}$
C
3
D
4
4
JEE Main 2023 (Online) 30th January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
The parabolas : $a x^2+2 b x+c y=0$ and $d x^2+2 e x+f y=0$ intersect on the line $y=1$. If $a, b, c, d, e, f$ are positive real numbers and $a, b, c$ are in G.P., then :
A
$\frac{d}{a}, \frac{e}{b}, \frac{f}{c}$ are in A.P.
B
$\frac{d}{a}, \frac{e}{b}, \frac{f}{c}$ are in G.P.
C
$d, e, f$ are in A.P.
D
$d, e, f$ are in G.P.
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12