In an electrochemical reaction of lead, at standard temperature, if $$\mathrm{E}^{0}\left(\mathrm{~Pb}^{2+} / \mathrm{Pb}\right)=\mathrm{m}$$ Volt and $$\mathrm{E}^{0}\left(\mathrm{~Pb}^{4+} / \mathrm{Pb}\right)=\mathrm{n}$$ Volt, then the value of $$\mathrm{E}^{0}\left(\mathrm{~Pb}^{2+} / \mathrm{Pb}^{4+}\right)$$ is given by $$\mathrm{m-x n}$$. The value of $$\mathrm{x}$$ is ___________. (Nearest integer)
Let R be a rectangle given by the lines $$x=0, x=2, y=0$$ and $$y=5$$. Let A$$(\alpha,0)$$ and B$$(0,\beta),\alpha\in[0,2]$$ and $$\beta\in[0,5]$$, be such that the line segment AB divides the area of the rectangle R in the ratio 4 : 1. Then, the mid-point of AB lies on a :
Let $$S=\left\{M=\left[a_{i j}\right], a_{i j} \in\{0,1,2\}, 1 \leq i, j \leq 2\right\}$$ be a sample space and $$A=\{M \in S: M$$ is invertible $$\}$$ be an event. Then $$P(A)$$ is equal to :
Let $$x_{1}, x_{2}, \ldots, x_{100}$$ be in an arithmetic progression, with $$x_{1}=2$$ and their mean equal to 200 . If $$y_{i}=i\left(x_{i}-i\right), 1 \leq i \leq 100$$, then the mean of $$y_{1}, y_{2}, \ldots, y_{100}$$ is :